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Abstract Affect detection from physiological signals

has received considerable attention. One challenge is

that physiological measures exhibit considerable vari-

ations over time, making classification of future data

difficult. The present study addresses this issue by pro-

viding insights on how diagnostic physiological features

of affect change over time. Affective physiological data

(Electrocardiogram, Electromyogram, Skin Conductiv-

ity, and Respiration) was collected from four partici-

pants over five sessions each. Classification performance

of a number of training strategies, under different con-

ditions of features selection and engineering, were com-

pared using an adaptive classifier ensemble algorithm.

Analysis of the performance of individual physiological

channels for affect detection is also provided. The key

result is that using pooled features set for affect detec-
tion is more accurate than using day-specific features. A

decision fusion strategy which combines decisions from

classifiers trained on individual channels data outper-
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formed a features fusion strategy. Results also show

that the performance of the ensemble is affected by the

choice of the base classifier and the alpha factor used to

update the member classifiers of the ensemble. Finally,

the corrugator and zygomatic facial EMGs were found

to be more reliable measures for detecting the valence

component of affect compared to other channels.
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physiological · non-Stationary

1 Introduction

There is increased motivation in using physiological sig-

nals in affect detection systems that detect either dis-

crete emotional categories or affective dimensions of va-

lence and arousal (AlZoubi et al, 2011; Kim and André,

2008; Picard et al, 2001). Physiological responses such

as facial muscle activity, skin conductivity, heart activ-

ity, and respiration have all been considered as poten-

tial markers for recognizing affective states (Whang and

Lim, 2008). Despite high classification rates achieved

under laboratory conditions (Kim et al, 2004; Lichten-

stein et al, 2008), the changing nature of physiologi-

cal signals introduces significant challenges when one

moves from the lab and into the real world (AlZoubi

et al, 2012; Plarre et al, 2011). In particular, physio-

logical data is expected to exhibit daily variations or

non-stationarities (AlZoubi et al, 2011; Picard et al,

2001), which introduce difficulties for building effective

classification models on future data (i.e., signals gener-

ated by the same individual across time). The ability

to integrate automatic affect detection capabilities in

computer systems depends largely on the underlying

models of affect, and how these models can adapt to

the changing nature of physiological data.
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Previous research has shown that affective physio-

logical data exhibited daily variations (AlZoubi et al,

2011; Picard et al, 2001). It was found that physiologi-

cal data for a given emotion on a particular day (day-

data) yielded a higher clustering cohesion or tightness

compared to data for the same emotion across multiple

days. This phenomenon can be attributed to a num-

ber of factors such as: 1) mood changes across days;

2) electrodes drift; 3) changes in electrode impedance;

and 4) modulations by other mental states such as at-

tention and motivation (Picard et al, 2001). Non-sta-

tionarity indicates that signals change their statistical

characteristics (e.g., means, standard deviation) as a

function of time, which then propagates to features val-

ues extracted from the signals over time.

Non-stationarities of physiological signals represent

a major problem for building reliable classification mod-

els that span multiple days. Most classification methods

assume that training data is obtained from a stationary

distribution (Last, 2002). However, this assumption of

stationarity is routinely violated in real-world contexts.

According to Kuncheva (2004a), every real-world clas-

sification system should have a mechanism to adapt to

time-varying changes. In order to address this issue,

this study utilizes an adaptive ensemble classification

approach - discussed in more detail in Section 3.

Understanding the nature of non-stationarities in

physiological signals is essential for developing reliable

affect detection systems that can be deployed in real-

world affective computing applications. There is a crit-

ical need for basic research on how physiological sig-

nals vary over time. This research contributes to this

goal by addressing two fundamental issues. First, we

study temporal changes to diagnostic physiological fea-

tures collected from four participants over five recording

sessions. The non-stationarities in physiological data

might indicate that diagnostic features of affect may

vary from one day/session to another. We test this is-

sue and evaluate an adaptive ensemble classification

approach that can potentially handle non-stationari-

ties in affective physiological data. The performance of

the ensemble was tested under different conditions of

features engineering and selection. Second, we test the

performance and reliability of individual physiological

channels for affect detection over the span of multi-

ple day recordings. Our results show that a decision

fusion strategy which combines decisions from classi-

fiers trained on individual channels data outperformed

a features fusion strategy. The results also show that

the choice of the base classier, and the alpha factor

used to update the member classifiers of the ensemble

have an effect on the performance of the ensemble. The

corrugator and zygomatic facial EMGs were found to

be more reliable measures for detecting valence than

arousal compared to other channels.

The remainder of this paper is organized as follows.

Section 2 gives an overview on affect detection using

physiological data. Section 3 describes the procedure of

collecting affective physiological data and the compu-

tational methods employed for features extraction and

classification. Section 4 presents our results, while Sec-

tion. 5 provides discussions and avenues for future work.

2 Background and related work

2.1 Physiological-based affect detection

According to Lazarus (1991) people adapt to their en-

vironment and to emotional stimuli via autonomic ner-

vous system (ANS) responses. Therefore, patterns of

ANS activity should be correlated with particular emo-

tional states. For example, research has revealed con-

sistent changes in facial electromyogram (EMG), par-

ticularly the corrugator muscle, in response to pleasant

or unpleasant stimuli (Lee et al, 2009). Similarly, elec-

trocardiogram (ECG) features, such as heart rate (HR)

and HR variability, can both be used as indicators of

valence and arousal (van den Broek et al, 2009). Skin

Conductivity (SC) has been traditionally considered to

be an index of arousal (Levenson, 1992). Respiratory

patterns may reflect and distinguish between emotional

states such as calmness versus excitement (Allanson

and Fairclough, 2004).

Research on emotion has typically relied on a set of

discrete emotional prototypes or basic emotions (e.g.,

happiness, sadness) (Ekman, 1992). As opposed to the
existence of discrete basic emotions, Russell (1980) sug-

gested that affective experience is best described in

the two-dimensional space of valence and arousal. The

arousal dimension ranges from highly deactivated to

highly activated (or sleepy to active), and the valence

dimension from highly unpleasant to highly pleasant.

For example, happiness is considered to have a positive

valence and high arousal. On the other hand, sadness

has a negative valence and low arousal. According to

Ekman (1994), emotions are short-lived, ranging from

seconds to minutes at most.

Recent research has utilized physiological signals for

affect detection of both arousal and valence. Kim and

André (2008) used physiological signals to detect lev-

els of valence and arousal during music listening. They

recorded ECG, facial EMG, SC, and respiration (RSP)

from three participants. Using an LDA classifier, they

achieved an 89% classification accuracy for high/low

valence, and 77% for high/low arousal. Similarly, Licht-

enstein et al (2008) recorded physiological data (ECG,
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SC, EMG, RSP, and skin temperature) while 41 par-

ticipants watched emotionally charged films. They were

able to detect high/low arousal with 82% accuracy and

72% for high/low valence using a support vector ma-

chine (SVM) classifier. Likewise, Picard et al (2001)

recorded physiological data over a period of 20 days

from one participant (an actor who was asked to self-

elicit a set of eight emotions). They faced the problem

of degraded classification performance when data from

multiple days were combined. They attempted to ad-

dress the problem of day variation by including day in-

formation as additional classification features; however,

this did not yield a significant improvement in accuracy.

Picard et al (2001) attempted to address the prob-

lem of daily variations in physiological data by includ-

ing day information as classification features. However,

they reported insignificant increase in classification ac-

curacy. Similarly Vyzas and Picard (1998) found that

the underlying mood appears to change the features val-

ues for all emotions. However, it had less of an effect on

the relative inter-relations among emotions. Therefore,

they emphasized the need for a real-time emotion de-

tection system that can adapt to a person’s underlying

mood.

It is anticipated that hardware and environmental

factors that affect physiological data can be mitigated

with advances in sensors and physiological recording

devices technology. However, users’ factors cannot be

easily alleviated. Applying an adaptive learning strat-

egy could be a possible solution to address changes in

physiological data. In the next section, we discuss in

more detail the justification for using adaptive and en-

semble classification for affect detection from physio-

logical data.

2.2 Approaches to adaptive classification in changing

environments

Many affective computing studies have relied on the

use of traditional batch static classification techniques

(Kim and André, 2008; Kim et al, 2004; Lichtenstein

et al, 2008; Picard et al, 2001). These classification

techniques learn a single model by examining a large

collection of instances at one time. These techniques

are based on the assumption that training and future

testing data are obtained from a stationary distribu-

tion, therefore there is no updating mechanism to their

underlining model. In real-world scenarios, data is col-

lected over time, which may range from seconds to days

to years. Therefore, changes in the data characteristics

are inevitable (Nishida et al, 2005; Sayed-Mouchaweh

and Lughofer, 2012). According to Cieslak and Chawla

(2009), the existence of a one-true-model or a well-cal-

ibrated classifier that is able to map every unseen ex-

ample correctly assumes that data comes from a sta-

tionary distribution. However, if the data distribution

changes substantially and unpredictably, the one-true-

model may become irrelevant when applied to future

instances. In other words, a pattern discovered by a

model from past data may not be valid on the newly

acquired data (Last, 2002). It is widely acknowledged

that humans learn in changing environments in a se-

quential manner by leveraging prior knowledge in new

situations. Therefore, the ability to make human-like

quick responses should be developed in machines to

handle real-world problems of this nature. Adaptive

classifiers promise to give machines this human-like ca-

pability (Angelov et al, 2010; Nishida et al, 2005). In

contrast to traditional classification systems which re-

quire a large sample of training data and start learning

from scratch, adaptive classifiers learn sequentially, as

data comes in, through an update mechanize to their

underlying model.

Ensemble learning is a promising approach for han-

dling non-stationary data (Kuncheva, 2004a; Yue et al,

2007). The ensemble consists of a group of classifiers

that learn from the incoming data, instead of a single

classifier. The idea is to train each ensemble member

on a different data segment with an unknown rate of

shift in distribution (Muhlbaier and Polikar, 2007). The

final output of the ensemble will depend on some de-

fined rules (e.g., majority voting). In the mathematical

classical bias/variance trade-off, classifier ensembles of-

fer an extra degree of freedom, which allow to obtain

solutions that would be difficult with a single classi-

fier (Oza and Russell, 2001; Oza and Tumer, 2008).

When time to make decisions is not the most impor-

tant factor, but high accuracy is required, an ensemble

would be a likely solution. (Kuncheva, 2004a). Efficient

learning in changing environments requires a learning

algorithm that can adapt quickly to a change in clas-

sification environment by adjusting its knowledge-base,

and can utilize previously learned knowledge in situa-

tions where old contexts reappear (Kuncheva, 2004a;

Widmer and Kubat, 1996).

It has been established that much is to be gained

from combining classifiers if the classifiers are as in-

dependent as possible and are trained in different re-

gions of features space as they will be able to provide

complementary information (Duda et al, 2001; Polikar

et al, 2001). Thus, the individual weakness or instabil-

ity of each classifier can be effectively averaged out by

the combination process, which may significantly im-

prove generalization of the classification system (Po-

likar, 2006). In general, there are multiple design rea-
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sons to consider ensemble-based approaches (Jain et al,

2000; Kuncheva, 2004b; Polikar, 2006; Webb, 2002), in-

cluding but not limited to the following:

- Different classifiers can be developed in different con-

texts/representation of the same problem. An exam-

ple is person identification by their voice, face as well

as handwriting.

- Different classifiers trained on the same data may

show strong local and global differences when decid-

ing decision boundaries between classes.

- Different classifiers can be trained to solve a problem

that is too difficult, and the decision boundary that

separates classes is too complex. Thereby, using a di-

vide and conquer strategy to break the problem into

smaller sub-problems.

In emotion detection research ensemble classifiers

have been found to offer some enhancement in accu-

racy rates compared to single classifiers. For example,

Kuncheva et al (2011) compared the performance of

eight single classifiers and six ensemble methods for de-

tecting negative and positive affective states from physi-

ological data (EEG, EDA and pulse sensor). They found

that ensemble methods outperformed single classifiers

in all comparisons. This shows that ensemble methods

have the potential for building more accurate and reli-

able automatic affect detection systems. Similarly, Al-

Zoubi et al (2009) compared the performance of adap-

tive and static classification approaches for classifying

10 affective states from electroencephalogram (EEG)

signals. They used an adaptive algorithm that updates

its knowledge base based on most recent examples, and

deleting the oldest examples. Results showed that adap-

tive classifiers outperformed the static versions of the

classifiers.

Adaptive classification techniques have been used

to handle non-stationarities in two close domains of

study: speech recognition and Brain Computer Inter-

faces (BCI). For example, Maier-Hein et al (2005) im-

plemented an adaptive approach to detect non-audible

speech using seven EMG electrodes. They found that a

key problem in surface EMG-based speech recognition

result from electrodes repositioning between recording

sessions, temperature changes in the environment, and

skin characteristics of the speaker. In order to reduce

the impact of these factors, they investigated a variety

of signal normalization and model adaptation methods.

An average word accuracy of 97.3% was achieved using

seven EMG channels with the same electrode positions.

The performance dropped to 76.2% after repositioning

the electrodes, when no normalization or adaptation

was performed. However, they were able to restore the

recognition rate to 87.1% using adaptive classification

methods.

Adaptive classification has also been employed in

BCI research. BCI aims at giving the ability to con-

trol devices through mere thoughts by analyzing brain

signals, such as Electroencephalogram (EEG). For ex-

ample, Lowne et al (2010) compared the performance of

a dynamic classification approach to a static classifier

and a multilayer perceptron (MLP) classifier on an on-

line BCI experiment. They used EEG data from eight

participants during a wrist extension exercise; 20% of

the data were labeled with true labels (movement, non-

movement). The three classifiers were then tested on

the EEG data in a sequential manner (time ordered) to

detect one of the two classes. The performance of the

dynamic classifier was significantly higher than that of

the static classifier and MLP. One important feature

of the dynamic classifier is the active label requesting,

which employs a probabilistic model and sets a thresh-

old about the confidence of the predicted class label, if

the confidence is low the classifier might issue a request

for the true class label.

In summary, these studies show that classifier adap-

tation might be more suitable to handle non-station-

ary data. Our approach capitalizes on the advantages

of both adaptive and ensemble classification techniques

for classifying our affective physiological dataset.

2.3 Fusion techniques in multimodal affect detection

Affective information can be collected from multiple

sources such as voice, facial expressions, and physio-

logical signals. Therefore there is a need for techniques

that combine and synthesize information from these

multimodal sources. This process is referred to as in-

formation fusion. There are a number of fusion tech-

niques associated with multimodal emotion detection,

such as features level fusion and decision level fusion

(Zeng et al, 2009). Features level fusion aims at inte-

grating extracted features from each modality into one

joint features vector. The issue with this approach is

that features from different signals might have different

temporal resolutions, which may require synchroniza-

tion of the extracted features. On the other hand, deci-

sion level fusion aims at integrating asynchronous but

temporally correlated modalities. Each modality is clas-

sified independently and the final decision is obtained

by fusing the decisions of all the modalities based on

some criteria such as averaging or voting. Designing an

optimal strategy for decision level fusion is still an open

research problem (Kim and André, 2006).

Chanel et al (2006) found that fusion provides more

robust results when combining EEG and peripheral sig-

nals related to ANS responses such as ECG, EMG,
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SC and RSP. According to the authors, some partic-

ipants had better scores with peripheral signals than

with EEG and vice-versa. Similarly, Kim and André

(2006) found that features level fusion provided the best

results using physiological signals and voice modalities,

noting that features level fusion is more appropriate

when combining modalities with analogous characteris-

tics. In this study we evaluate both fusion strategies.

3 Measures, data and methods

3.1 Participants and measures

Participants were six students enrolled in an Australian

University (five males and one female), between 24 and

39 years of age. Participants were paid for their partic-

ipation in the study. The study was approved by the

University of Sydney’s Human Ethics Research Com-

mittee (HERC), and consents were obtained from par-

ticipants prior to data collection. Physiological data in-

cluded: Electrocardiogram (ECG), Skin Conductivity

(SC), Electromyogram (EMG), and Respiration (RSP).

The physiological signals were acquired using BIOPAC

MP150 system and AcqKnowledge software with a sam-

pling rate of 1000 Hz for all channels. The ECG signal

was collected with two electrodes placed on both wrists.

EMG was recorded from the corrugator (eyebrow) and

zygomatic (cheek) facial muscles. The SC was recorded

from the index and middle fingers of the non-dominant

hand, and a respiration belt fixed around the partic-

ipant chest was used to measure respiration activity.

These sensors were non-invasive and caused minimal

distress to participants. Figure 1 shows a participant

with the sensors attached.

Physiological signals were filtered to remove envi-

ronmental noise including baseline drifts, artefacts re-

sulting from movements, and mains interference. The

ECG signal was high pass filtered at 0.05 Hz and low

pass at 35 Hz, with a notch filter applied through the

recording device. The EMG signal was high pass fil-

tered at 10 Hz to remove low frequency artefacts such

eye movements, eye blinks and motion potentials, and

low pass filtered at 500 Hz. The SC and RSP signals

were high pass filtered at 0.05 Hz in order to remove

slow drifts, and low pass filtered at 1 Hz in order to

remove high frequency noise. Figure 2 shows a sample

of a recorded signal.

The affect-inducing stimulus consisted of set of 400

images selected from the International Affective Picture

System (IAPS) collection (Lang et al, 1995). The IAPS

collection is designed to provide a set of normative emo-

tional stimuli for the study of emotions and attention

(a) EMG sensors (b) RSP sensor

(c) ECG sensor (d) SC sensor

Fig. 1 Sensors’ placement.
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(Lang et al, 2005). The images were selected on the ba-

sis of their normative valence and arousal scores. The

mean valence normed scores range from 1.40 to 8.34 (M

= 5.03, SD = 1.77), and mean arousal normed scores

range from 1.72 to 7.35 (M = 4.82, SD = 1.55), on a

scale from 1 to 9. Figure 3 shows the distribution of

IAPS images on the valence/arousal plane.
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Table 1 The four quadrants, and mean values for valence
and arousal

Quadrant Mean valence and arousal range

Positive-Valence/Low-Arousal (valence-mean > 6.03 && arousal-
mean < 5.47)

Positive-Valence/High-Arousal (valence-mean > 6.03 && arousal-
mean > 5.47)

Negative-Valence/High-Arousal (valence-mean < 3.71 && arousal-
mean > 5.47)

Negative-Valence/Low-Arousal (valence-mean < 3.71 && arousal-
mean < 5.47)

Images were selected from the four quadrants of the

valence-arousal plane, described in Table 1. The idea

was to select images from the extremes of both valence

and arousal in order to maximize the differences of par-

ticipants’ physiological responses. The set of 400 im-

ages was then divided into 5 sets of 80 images each (20

images from each category). However, we consider the

valence and arousal dimensions separately in the clas-

sification experiments described in Section 4.

Only four participants were able to complete the five

recording sessions, which was due to the distressing na-

ture of some IAPS images. Therefore, only data from

these four participants were used in the current study.

We note that even though the participant sample size

is small, each participant was recorded over 5 sessions.

This is consistent with the present goal of tracking vari-

ations within an individual rather than across individ-

uals.

3.2 Experimental procedure

Physiological signals were continuously recorded while

participants viewed a set of emotionally charged IAPS

images. Each recording session lasted approximately 60

minutes. Emotional trials consisted of presenting each

image for 12 seconds, followed by a 2 × 2 affective grid

(Russell et al, 1989) that asked participants to rate their

levels of valence (positive, negative), and arousal (low,

high). The affective grid had four buttons projected on

the four quadrants of the valence/arousal plane, each

button representing one of the categories described in

Table 1. Next, a blank screen was presented for 8 sec-

onds to allow physiological activity to return to base-

line neutral levels before a new image was presented.

Five images were presented consecutively from each cat-

egory in order to maintain a stable emotional state for

that category. This protocol was designed to suit the

intended goals of our study and is based on previous

research (Bradley and Lang, 2007; Chanel et al, 2006).

Each participant participated in five recording sessions,

each separated by one week. A different set of images

were presented for each session in order to prevent ha-

bituation effects. However, each set contained 20 images

from each of the four categories described in Table 1.

3.3 Day-datasets

Day-datasets were constructed separately for the two

affective measures of valence and arousal. Datasets were

constructed for both IAPS-mapped categories and self-

reports of participants. In total there were 80 datasets,

(4 participants × 5 recording sessions × 2 affective mea-

sures (valence and arousal) × 2 ratings (IAPS and self-

reports)), with 80 instances in each dataset. IAPS rat-

ings datasets had a balanced distribution of classes with

40 instances for each class of positive/negative valence,

and low/high arousal. On the other hand, self-reports

had unbalanced distribution of classes. A down-sam-

pling procedure, WEKA’s SpreadSubsample which pro-

duces a random sub-sample of a dataset, was applied to

obtain a balanced distribution of classes. Therefore, the

baseline classification accuracy is (50%) for both types

of data sets. It should be noted that we did not opt

to use oversampling procedures, since they can intro-

duce artificial patterns that may affect the reliability

or interpretation of results.

3.4 Features extraction

The MATLAB Augsburg Biosignal Toolbox (AuBT)

(Wagner et al, 2005) was used to extract features from

the raw physiological data. A total of 214 statistical

features (e.g. mean, median, standard deviation, max-

ima and minima) were extracted from the five physio-

logical channels using window size of 12 seconds (the

length of the emotional trial). The same statistical fea-

tures were obtained for different transformations of the

signals, including RSP rate, amplitude of the RSP sig-

nal, heart rate variability (HRV) and amplitude of the

different segments of the QRS complex of the ECG

signal. These same features were also computed from

the first and second derivatives of the signals and their

transformations. It is known that the temporal resolu-

tion for these autonomic measures vary in response to

emotional stimuli. In general, SC responses (SCR) can

be observed 1–3 seconds after stimulus presentations.

EMG responses are substantially faster, however, the

frequency of the muscle activity can be summed up

over a period of time to indicate a change in behav-

ior (Andreassi, 2007). ECG and respiration responses

are considered slower, but we were constrained to use a

window size of 12 seconds because this was the length
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of a single trial. However, estimating short term cardiac

and respiratory patterns is common in psychophysiol-

ogy research area (Kreibig, 2010). Overall, eighty-four

features were extracted from ECG, 21 from SC, 21 from

each of the EMG channels, and 67 from the RSP chan-

nel. A complete description of these features can be

found in (Wagner, 2009).

3.5 Classification methods

Algorithm 1 describes the Winnow updatable ensemble

algorithm used in this study. Winnow is an ensemble

based algorithm that is similar to a weighted major-

ity voting algorithm because it combines decisions from

ensemble members based on their weights (Kuncheva,

2004a). However, it utilizes a different updating ap-

proach for member classifiers. This includes promot-

ing ensemble members that make correct predictions

and demoting those that make incorrect predictions.

This updating strategy ensures that correct decisions

made by the ensemble are amplified, and incorrect ones

are minimized. Updating of the weights is done auto-

matically based on incoming data, which makes this

approach suitable for online applications. In order to

construct the ensemble, we used a fixed ensemble size,

which is equal to the number of day-datasets per par-

ticipant. In our approach, each day-dataset was used

to train a separate classifier in batch mode, which was

then added to the ensemble.

Algorithm 1 The Winnow ensemble algorithm

1 Initialization: Construct a classifier ensemble
D = (D1, ..., Dn), each classifier is trained in batch
mode on a given dataset, Initialize all classifiers
weights; Wi = 1. i = 1 : n.

2 Classification: For a new example X, calculate the
support for each class as the sum of the weights of all
member classifiers Di that suggest class label Ck for
X. Set X to the class with largest support.
K = 1:number of classes.

3 Updating: if X is classified correctly by classifier Di

then its weight is increased (promotion):
Wi = alpha ∗Wi, where alpha > 1. If classifier Di

incorrectly classifies X, then its weight is decreased
(demotion): Wi = Wi/alpha

There are other adaptive ensemble classification al-

gorithms (e.g., Dynamic Weighted Majority, and Hedge

β algorithms) described in literature (Kolter and Mal-

oof, 2003; Kuncheva, 2004a). Some of these algorithms

may have different strategies for building and updat-

ing the ensemble compared to the one described above.

This simple adaptive ensemble algorithm was adopted

in order to demonstrate the efficacy of adaptive en-

sembles for handling non-stationarities of physiological

data in comparison to batch static classification. This

decision was also motivated by the nature of the clas-

sification problem at hand, with data generated from

multiple session recordings.

We used a fixed ensemble size of four base classi-

fiers; each classifier trained on data from a single session

recording. The reason behind this decision is twofold.

Firstly, the nature of the data; we found in our previ-

ous work that data that comes from each session showed

high clustering cohesion compared to data from other

sessions (AlZoubi et al, 2011). Each ensemble member

can then be viewed as a specialist or an expert classi-

fier. Secondly, the small data sample size; we only have

data from five recording sessions. However, we believe

that a dynamic ensemble size is mandatory when more

data becomes available. In this case the lowest perform-

ing classifier/s can be removed from the ensemble and

newer members are added. This is a common approach

for online ensembles with large data throughput (Bifet

et al, 2009).

The WEKA machine learning software (Witten and

Frank, 2005) and PRTools 4.0 (Heijden et al, 2004)

were used for preprocessing, features selection and clas-

sification. PRTools offers a variety of data preprocess-

ing and classification methods that allow for the design

of custom-specific classification programs in MATLAB.

Chi-square features selection was used to reduce the di-

mensionality of the features space in order to avoid var-

ious problems associated with large features spaces. A

preliminary analysis showed that using top-five ranked

features were sufficient to produce consistent classifica-

tion results without sacrificing performance. Therefore,

using Chi-square features selection, the top five features

were selected from each dataset and used in all subse-

quent analysis.

4 Results

We first tested the effectiveness and reliability of the

IAPS images for inducing both valence and arousal (us-

ing inter-rater Cohen’s kappa as an evaluation metric).

We then tested how diagnostic features of affect change

over time by applying feature ranking (chi-square) to

separate day-datasets. A number of training strategies

were designed to help mitigate the issue of features

changes over time. A number of experiments were car-

ried out to test the performance of the Winnow ensem-

ble algorithm under different conditions of features en-
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gineering and selection. We tested four training strate-

gies, which are: 1) day cross-validation; 2) Winnow with

pooled features; 3) Winnow with day-specific features;

and 4) Winnow with decision fusion from individual

channels data . The details of these training strategies

are explained below:

- Static classification (SCL): A single baseline classi-

fication model was constructed from pooled data of

four days, and testing was done on data from the re-

maining day. This process was repeated five times in

order to test on all available data. This training strat-

egy represents a static classification approach without

an update mechanism.

- Winnow with pooled features (WPF): The Winnow

ensemble algorithm was run with an ensemble of four

base classifiers each trained on a pooled features set.

Pooled features are features selected from four days

data combined. Testing was done on the remaining

day-data. The procedure was repeated five times to

test on all available data.

- Winnow with day-specific features (WSP): The Win-

now ensemble algorithm was run with an ensemble of

four base classifiers each trained on a separate day-

specific features dataset. Testing was done on the re-

maining day-data. The procedure was repeated five

times to test on all available data.

- Winnow with decision fusion from individual chan-

nels data (WDF): This method used base classifiers

that were trained on individual channels data using

pooled features. Using datasets from four days, a new

member classifier was constructed from the 5 physi-

ological measures resulting in an ensemble with 20

classifiers. Testing was done on the remaining day-

data. The procedure was repeated five times to test

on all available data. In order to classify a new exam-

ple, the decisions of these base classifiers are combined

using the Winnow decision fusion strategy.

The fundamental assumption behind utilizing clas-

sification techniques is that pre-trained classification

models can be used to predict future unseen input.

Thus, a day cross-validation procedure was adopted so

that training data included data from four days, and

the fifth day-data was used for testing. This procedure

was repeated five times to test on all day-datasets. The

objective of this analysis is to assess the accuracy of

classifiers that are trained on different day-data to pre-

dict exemplars from other days. We also test the effect

of individual physiological channels on affect detection

accuracy. In addition, we evaluated the effect of the

two factors that can affect the performance of the Win-

now ensemble. These are: a) The baseline classifier; and

b) The alpha factor used to update the weights of the

ensemble.

4.1 The effectiveness of IAPS at inducing affect

We used inter-rater Cohen’s Kappa to test the effective-

ness of the IAPS stimuli in inducing both valence and

arousal. We test the level of agreement between partici-

pants’ self-reports and IAPS normative ratings. Partic-

ipants’ self-reported valence showed higher agreement

(kappa = 0.89) with IAPS normative ratings, whereas

arousal self-reported arousal did not show that level of

agreement (kappa = 0.41). It is evident that the IAPS

stimuli were quite successful in eliciting valence, but

was much less effective in influencing arousal. However,

both ratings dimensions will be used to assess affect

detection accuracy.

4.2 Day-specific features

As an example of how diagnostic features change across

days, Table 2 presents the results of chi-square fea-

tures selection applied to participant S1 (applied to

each day-data separately). It can be seen from the list

of features that the diagnostic features are different for

each day. The chi-square value represents the degree

of relevance of a feature to class category. Table 2

presents the features selected from one participant us-

ing IAPS ratings only, however data from other partic-

ipants showed similar patterns. An interesting observa-

tion is that there are some features which reoccur on

different days (e.g., ZYG-EMG-1Diff-maxRatio, ZYG-

EMG-1Diff-minRatio). This is promising as it allows

for easier calibration of affect detection classification

models. However this leaves us the question of whether

classification models that are built from these day-spe-

cific features are more accurate than those built using

pooled features.

4.3 Winnow results with day-specific and pooled

features

The SCL, WPF, and WSF training strategies were used

to classify data from the four categories; Valence-IAPS,

Arousal-IAPS, Valence-Self, and Arousal-Self. The re-

sults in Table 3 were obtained using features fusion

from all five physiological channels; top five features

were selected from all channels. A SVM classifier with

a linear kernel was used as a base classifier for the train-

ing. We also used using the same training strategies to

classify individual channels data. Table 4 shows the
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Table 2 The top five selected features using chi-square features selection performed on day-data separately for participant
S1 with valence(IAPS) as class label

Chi Square/Feature Name

Day 1 Features Day 2 Features Day 3 Features Day 4 Features Day 5 Features

43 SC-2Diff-minRatio 23 ZYG-EMG-1Diff-minRatio 10 SC-1Diff-minRatio 16 ZYG-EMG-max 28 ZYG-EMG-2Diff-minRatio
43 SC-2Diff-maxRatio 23 ZYG-EMG-1DiffmaxRatio 10 RSP-Ampl-1Diff-max 10 ECG-QS-min 26 SC-2Diff-maxRatio
23 ZYG-EMG-1Diff-maxRatio 14 RSP-2Diff-range 10 SC-1Diff-maxRatio 9 ECG-QS-range 2 4 SC-2Diff-minRatio
23 ZYG-EMG-1Diff-minRatio 13 RSP-2Diff-min 76 RSP-Ampl2Diff-maxRatio 8 ECG-HrvDistr-mean 23 ZYG-EMG-2Diff-maxRatio
23 RSP-Pulse-max 12 ZYG-EMG-2Diff-mean 5 ECG-HrvDistr-mean 6 RSP-Pulse1Diff-maxRatio 12 RSP-Ampl-mean

*ZYG: Zygomatic facial muscle, Amp: Amplitude, min: Minimum, max, Maximum, HRV: Heart rate variability, 1 Diff: First Difference, 2 Diff: Second Difference

classification accuracies for the individual physiological

channels for the four emotional categories using pooled

features only. Results for day cross-validation and day-

specific features are not shown here but will be out-

lined in the Analysis of Variance (ANOVA) analysis

described next.

In order to examine the effect of training strategy on

affect detection accuracy, an ANOVA was conducted on

all accuracy scores obtained from the above described

procedures. This is a one-way ANOVA with accuracy

as the dependent variable and training strategy (SCL,

WPF, WSF) as the independent variable. The analy-

sis showed significant main effect for training strategy

(F(2,285) = 57.67, p < 0.05). Bonferroni posthoc tests

revealed that accuracy scores for WPF (M = 65.14)

were higher than those for WSF (M = 57.81) and

SCL (M = 55.55). The accuracy scores using WPF and

WSP were higher than SCL baseline accuracy. This in-

dicates that we were able to leverage the dynamic learn-

ing ability of Winnow algorithm to enhance classifica-

tion accuracy. We also found that WPF outperformed

WSF, although we were expecting that day-specific fea-

tures would provide higher performance. The explana-

tion for the lower performance of day-specific features
might be that day-data tends to have higher cluster-

ing cohesion compared to data for the same emotion

category across multiple days. This suggests that using

pooled features are more suitable for building predictive

models of affect than using day-specific features.

4.4 Physiological channels effect on affect detection

accuracy

The effect of both channel and emotion on affect de-

tection accuracy was tested using a two-way ANOVA.

The ANOVA was conducted on accuracy scores ob-

tained from the WPF training strategy. We found sig-

nificant main effect of channel (F(5,72) = 12.60, p <

0.05). Posthoc tests revealed that accuracy scores for

EMG-cur (M = 69.87) and features fusion (M = 72.25)

were significantly higher than for other channels ECG

(M = 62.37), EMG-zyg (M = 58.5), RSP (M = 61.62),

and SC (M = 61.62). We did not find significant effect

Table 4 Average classification accuracy using WPF from
individual channels data (%)

Subject Id ECG EMGcur EMGzyg SC RSP

S1 58 76 73 71 60
S2 55 65 58 62 61
S3 63 86 69 60 59
S4 58 88 74 54 59

Average 58.50 78.75 68.50 61.75 59.75

(a) Valence (IAPS)

Subject Id ECG EMGcur EMGzyg SC RSP

S1 62 68 59 54 61
S2 68 79 60 60 57
S3 61 60 63 61 70
S4 58 74 57 58 57

Average 62.25 70.25 59.75 58.25 61.25

(b) Arousal (IAPS)

Subject Id ECG EMGcur EMGzyg SC RSP

S1 61 71 67 71 63
S2 64 64 61 63 63
S3 65 67 66 60 59
S4 57 88 74 52 63

Average 61.75 72.50 67.00 61.50 62.00

(c) Valence (self)

Subject Id ECG EMGcur EMGzyg SC RSP

S1 59 67 60 56 58
S2 58 68 62 66 59
S3 70 70 50 67 67
S4 63 73 57 71 64

Average 62.50 69.50 57.25 65.00 62.00

(d) Arousal (self)

for emotion category (F(3,72) = 1.14, p = 0.34). But

when the levels of emotional categories were decreased

to two (valence, arousal), the effect of emotion was

only marginally insignificant (F(1,84) = 3.5, p = 0.065).

However, a significant effect (F(5,84) = 2.36, p < 0.05)

for the interaction between channel and emotion was

found.

The interaction effect was further explored by con-

ducting simple effects test. The test revealed that EMG-

cur (F(1,84) = 4, p < 0.05), and EMG-zyg (F (1, 84) =

10.44, p < 0.05) were more useful for detecting valence

than arousal. Other channels, ECG (F(1,84) = 43, p =
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Table 3 Average classification accuracies using static classification (SCL), Winnow with pooled features (WPF), and Winnow
with specific features (WSP) for four participants (S1–S4), using features fusion from all channels (%)

Valence (IAPS) Arousal (IAPS) Valence (self) Arousal (self)

Subject Id SCL WPF WSF SCL WPF WSF SCL WPF WSF SCL WPF WSF

S1 59 74 64 52 72 56 52 73 68 50 63 62

S2 54 63 61 51 69 53 53 62 59 49 65 48

S3 50 74 61 52 75 49 51 79 64 51 76 60

S4 50 76 54 48 73 59 50 70 54 52 69 69

Average 53.25 71.75 60.00 50.75 72.25 54.25 51.50 71.00 61.25 50.50 68.25 59.75

0.62), features fusion (F(1,84) = 70, p = 0.15),

RSP (F(1,84) = 0.07, p = 0.79), and SC (F(1,84) = 0, p =

0.99), were equally likely to detect both valence and

arousal with the same accuracy. Figure 4 shows the in-

teraction effect between channel and emotion. Previous

research has shown that SC for example is more useful

for detecting arousal than valence (Lang, 1995; Lev-

enson, 1992). Our findings were in accordance with the

literature with regards to both EMG channels. The cor-

rugator and zygomatic EMG have always shown con-

sistent changes with the valence component of emotion

(Hamm et al, 2003). On the other hand, previous re-

search has always considered SC as an index of arousal

(Levenson, 1992), but this was not observed here.

Our results show that detecting arousal with ac-

ceptable accuracy required more physiological markers

in comparison to valence. It can be seen from Fig. 4

that features fusion has the highest mean compared to

other channels for detecting arousal component. The

literature is somehow inconsistent in this regard, with

studies reporting higher detection rates for arousal than

valence (Haag et al, 2004; Lichtenstein et al, 2008) and

the contrary (Kim and André, 2008). However, an in-

teresting study conducted by Gomez et al (2009) found

that induced physiological changes of participants’ va-

lence lasted longer than those of arousal which dissi-

pates quickly. This might explain the higher detection

rates of valence compared to arousal. However, it should

also be noted that some researchers state that valence

detection can be more difficult to detect compared to

arousal as valence information is conveyed more subtly

(Picard, 1997).

4.5 Classifier and alpha factor effect on the

performance of the Winnow ensemble

In this experiment we tested the two main factors that

may have an effect on the performance of the Win-

now ensemble. These are the base classifier, and the

alpha factor. In order to test the classifier effect, we
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Fig. 4 Interaction effect between channel and emotion (va-
lence and arousal).

used a WPF strategy with different base classifiers.

These are listed in Table 5. SVMs and linear percep-

tron are attractive methods due to their high gener-

alization capability, while k-nearest neighbor classifier

is a good choice, especially with small datasets (Al-

zoubi, 2012). NaiveBayes was included as a standard

bench mark method. We used data from all partici-

pants, but we used one category (Valence-IAPS) only

as a demonstration. In this experiment, the alpha factor

was set to 2. We conducted one-way ANOVA on accu-

racy scores obtained from training the ensemble with

different base classifiers. We found significant differ-

ences in the performance of the Winnow ensemble with

different base classifiers (F(4,75) = 9.06, p < 0.05). Bon-

ferroni posthoc tests revealed that accuracy scores for

SVM with a linear kernel (M = 70.81) and Linear per-

ceptron (M = 68.94) were higher than those for K-near-

est neighbor (M = 62.25), Naive Bayes (M = 61.75),

and SVM with sigmoid kernel (M = 66.31). Figure 5

shows an error bar chart of the classifier accuracy data.

The error bars show the 95% confidence interval around

the mean. These results indicate that the choice of the

base classifier has an effect on the performance of the

ensemble. It is known that there is no classification al-
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Table 5 Base classifiers description

Classifier Description

SVM-linear Support vector machine classifier that combines a maximal margin strategy with a kernel method to find
an optimal boundary in the features space, this process is called a kernel machine. The machine is trained
according to the structural risk minimization criterion. svm-linear uses a linear kernel

KNNC K-nearest neighbor, classical instance-based algorithm; uses normalized Euclidean distance, k is optimized
using the leave-one error. It assigns the class label by majority voting among nearest neighbors.

SVM-sigmoid support vector machine classifier with sigmoid kernel.

perlc Linear perceptron classifier, learning rate set to 0.1

naivebc Naive Bayes, standard probabilistic classifier, the classifier assigns an example to the class that has the
maximum estimated posterior probability.

svm−linear perlc svm−sigmoid knnc naivebc
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Fig. 5 Winnow ensemble accuracy data with different base
classifiers (means with 95% CI) across all participants’ data
and categories.

gorithm that can outperform all other methods in all

contexts (Duda et al, 2001).

We tested the performance of the ensemble for a

range of alpha values (1.1–10) with the same base clas-

sifiers mentioned earlier. Figure 6 shows a plot of ac-

curacy scores, averaged across all participants’ data,

against alpha values. It can be seen that accuracy scores

peeks around (alpha = 2), and remains relatively sta-

ble afterward. Previous research has shown that setting

alpha to two is a proper choice (Kuncheva, 2004a).

4.6 Individual channels decision fusion

There are a number of fusion techniques that are used to

fuse affective information from multiple channels. These

were discussed in Section 2.3. Table 6 shows classifi-

cation accuracy scores obtained using WDF training

strategy. We compare the performance of decision fu-

sion training strategy (WDF) to that of features level

fusion represented by (WPF) training strategy. The

WPF selects features from all physiological channels,

so it represents a features level fusion strategy. We con-

ducted one-way ANOVA on accuracy scores obtained
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Fig. 6 Alpha factor effect on the performance of the ensem-
ble.

from both training strategies and using different base

classifiers. We found significant differences in the per-

formance of the Winnow ensemble by using the two

training strategies (F(1,158) = 74.27, p < 0.05). The

mean for WDF was (M = 75.67), and for WPF (M =

66.01). This indicates that decision fusion from indi-

vidual independent channels’ data outperformed the

features fusion strategy. This could be due to the na-

ture of asynchronous physiological markers of affect oc-

curring at different times within a specific time frame

in response to a stimulus. Similar findings were ob-

served in similar setups by fusing decisions obtained

from EEG and peripheral physiological signals (Chanel

et al, 2006).

5 Discussions and conclusions

We have shown that diagnostic physiological features

of affect exhibit daily variations. This is a challenging

issue for building effective physiological-based affect de-

tection systems. In order to be able to detect affect

from future physiological data, there is a need for a

classification system that can handle these day/session

variations. We have shown that a classifier ensemble
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Table 6 Average classification accuracies obtained using
WDP training strategy(%)

Subject Id svmlinear knnc svmsigmoid perlc naivebc

S1 67 83 65 74 70
S2 82 71 82 77 83
S3 84 82 78 84 79
S4 86 88 84 84 84

Average 79.75 81.00 77.25 79.75 79.00

(a) Valence (IAPS)

Subject Id svmlinear knnc svmsigmoid perlc naivebc

S1 77 77 77 83 81
S2 76 80 70 81 73
S3 74 81 76 82 82
S4 84 80 82 82 84

Average 77.75 79.50 76.25 82.00 80.00

(b) Arousal (IAPS)

Subject Id svmlinear knnc svmsigmoid perlc naivebc

S1 66 67 63 75 65
S2 82 76 81 86 87
S3 58 71 53 76 72
S4 85 83 83 82 83

Average 72.75 74.25 70.00 79.75 76.75

(c) Valence (self)

Subject Id svmlinear knnc svmsigmoid perlc naivebc

S1 69 67 66 75 70
S2 70 66 67 62 59
S3 64 63 76 72 70
S4 74 76 71 78 76

Average 69.25 68.00 70.00 71.75 68.75

(d) Arousal (self)

approach offer such a capability by combining multiple

classifier’s decisions and updating their weights accord-

ing to their performance. This enhances the general-

ization capability of the system on future data. Our

analysis showed that affect detection using day-specific

features did not yield improved performance over using

pooled features set. Our analysis also showed that a

decision fusion strategy which combines decisions from

classifiers trained on individual channels data of each

day (WDF) outperformed a features fusion strategy

(WPF). We have tested the two factors that may have

an effect on the performance of the ensemble. We found

that the performance of the ensemble is affected by the

choice of the base classifier - SVM with a linear ker-

nel provided robust performance. We also found that

the alpha factor with values close to 2 provided the

best performance. The facial EMG of corrugator and

zygomatic were more predictive of valence than arousal

compared to ECG, RSP and SC. This should have im-

plications if designers of affect detection systems were

more interested in detecting valence than arousal. This

also might suggest that facial EMG is more reliable

than other measures when considering affect detection

over multiple sessions. Additionally, EMG-cur and a fu-

sion of features from all channels yielded the highest

recognition rates for both valence and arousal.

Adaptive classification enhanced the detection rate

of affect on this type of changing data compared to

static classification. However, there are a number of

limitations with this approach. First, adaptation comes

with the cost of additional complexity, and computa-

tion time. This might not be favorable if time for mak-

ing decisions is critical. Second, there is no single adap-

tion system that fits all uses, since it is application de-

pendent. Third, the updating mechanism of the sys-

tem might require (at some point) the existence of true

class labels (ground truth). The absence of ground truth

when needed might affect the performance of an adap-

tive classification system. Although ground truth labels

could be potentially estimated using unsupervised tech-

niques, this comes with additional complexity and time

cost. Alternatively, ground truth labels can be obtained

from users when the confidence about the predicted

class label drops below a certain level and a user inter-

vention is needed in order to maintain the consistency

of the system. This might not seem practical, however

obtaining periodic and sparse self-reports of emotions

from users will help maintain the effective operation

and consistency of the system.

When more data becomes available, the ensemble

size may grow unbound. In order to control the size of

the ensemble, making structural changes for the ensem-

ble is inevitable. This can be done by removing some

of lowest performing member classifiers. This is neces-

sary when fast decisions in real time is required. One

primary advantage of the use of the ensemble is that

there is no need to retrain existing member classifiers;

only newly added member classifiers are needed to be

trained on the newly available data, thereby saving time

when these kinds of structural changes are required.

This study has provided evidence on the time-vary-

ing nature of affective physiological data as indicated

from data that was acquired on multiple recording ses-

sions. This characteristic of the data affected the per-

formance of static classifiers which assume stationar-

ity of the data considerably, with performance near

baseline. This has major implication on building au-

tomatic physiology-based affect detectors. As an alter-

native to static classification approach, an updatable

ensemble-based classification approach proved to offer

significant performance enhancement over static classi-

fiers. Although the results of the ensemble were mod-

erate, they warrant improvement via further research.

Classifiers ensemble with an update mechanism could

possibly offer solutions to many problems that result

from the time-varying nature of physiological data. For
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example, the classifiers ensemble approach might be

able to address changes in the classification environ-

ment which include 1) data distribution changes (fea-

tures space), as is the case when data is obtained from

different days or sessions, 2) changes in class distribu-

tion, which are quite prevalent during naturalistic in-

teractions, 3) changes in diagnostic features, where fea-

tures for discriminating particular affective states may

change over time, 4) the introduction of new users over

time, i.e., building user-independent models. Therefore,

an updatable ensemble-based modeling technique might

be a more practical option for building real-world af-

fect detection systems than static classifiers which are

trained on initial data and are never updated to reflect

new data.

There are two primary limitations with the present

study. One limitation of our work is the relatively small

sample size, so replication with a larger sample is war-

ranted. The second limitation is that emotions were

artificially induced rather than spontaneously experi-

enced. This approach was adopted because strict lab-

oratory control was desired for assessing the day-data

phenomenon. These types of methodological issues can

only be solved in larger studies. Thus, replicating this

research in more naturalistic contexts is an important

step for future work. Naturalistic affective interactions

cover a wide range of applications; one such example

that stirred interest from researchers is recording emo-

tional responses of call center workers going under var-

ious degrees of stress.
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